
Package: currr (via r-universe)
August 21, 2024

Title Apply Mapping Functions in Frequent Saving

Version 0.1.2

Description Implementations of the family of map() functions with
frequent saving of the intermediate results. The contained
functions let you start the evaluation of the iterations where
you stopped (reading the already evaluated ones from cache),
and work with the currently evaluated iterations while
remaining ones are running in a background job. Parallel
computing is also easier with the workers parameter.

License MIT + file LICENSE

URL https://github.com/MarcellGranat/currr

BugReports https://github.com/MarcellGranat/currr/issues

Depends R (>= 4.1.0)

Imports cli, dplyr, tidyr, readr, stringr, broom, pacman, tibble, job,
rstudioapi, scales, parallel, purrr, stats

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Repository https://marcellgranat.r-universe.dev

RemoteUrl https://github.com/marcellgranat/currr

RemoteRef HEAD

RemoteSha e3b71de173ee134acaa4f8e47c4171aef8cf92c7

Contents
cp_map . 2
cp_map_chr . 4
cp_map_dbl . 5
cp_map_dfc . 7
cp_map_dfr . 9

1

https://github.com/MarcellGranat/currr
https://github.com/MarcellGranat/currr/issues

2 cp_map

cp_map_lgl . 11
remove_currr_cache . 12
saving_map . 13
saving_map_nodot . 14

Index 15

cp_map Wrapper function of purrr::map. Apply a function to each element
of a vector, but save the intermediate data after a given number of
iterations.

Description

The map functions transform their input by applying a function to each element of a list or atomic
vector and returning an object of the same length as the input. cp_map functions work exactly the
same way, but creates a secret folder in your current working directory and saves the results if they
reach a given checkpoint. This way if you rerun the code, it reads the result from the cache folder
and start to evalutate where you finished.

• cp_map() always returns a list.

• map_lgl(), map_dbl() and map_chr() return an atomic vector of the indicated type (or die
trying). For these functions, .f must return a length-1 vector of the appropriate type.

Usage

cp_map(.x, .f, ..., name = NULL, cp_options = list())

Arguments

.x A list or atomic vector.

.f A function, specified in one of the following ways:

• A named function, e.g. mean.
• An anonymous function, e.g. \(x) x + 1 or function(x) x + 1.
• A formula, e.g. ~ .x + 1. You must use .x to refer to the first argument.

Only recommended if you require backward compatibility with older ver-
sions of R.

... Additional arguments passed on to the mapped function.

name Name for the subfolder in the cache folder. If you do not specify, then cp_map
uses the name of the function combined with the name of x. This is dangerous,
since this generated name can appear multiple times in your code. Also changing
x will result a rerun of the code, however you max want to avoid this. (if a subset
of .x matches with the cached one and the function is the same, then elements
of this subset won’t evaluated, rather read from the cache)

cp_options Options for the evaluation: wait, n_checkpoint, workers, fill.

cp_map 3

• wait: An integer to specify that after how many iterations the console
shows the intermediate results (default 1). If its value is between 0 and
1, then it is taken as proportions of iterations to wait (example length of .x
equals 100, then you get back the result after 50 if you set it to 0.5). Set
to Inf to get back the results only after full evaluations. If its value is not
equal to Inf then evaluation is goind in background job.

• n_chekpoint: Number of checkpoints, when intermadiate results are saved
(default = 100).

• workers: Number of CPU cores to use (parallel package called in back-
ground). Set to 1 (default) to avoid parallel computing.

• fill() When you get back a not fully evaluated result (default TRUE).
Should the length of the result be the same as .x?

You can set these options also with options(currr.n_checkpoint = 200).
Additional options: currr.unchanged_message (TRUE/FALSE), currr.progress_length

Value

A list.

See Also

Other map variants: cp_map_chr(), cp_map_dbl(), cp_map_dfc(), cp_map_dfr(), cp_map_lgl()

Examples

Run them on console!
(functions need writing and reading access to your working directory and they also print)

avg_n <- function(.data, .col, x) {
Sys.sleep(.01)

.data |>
dplyr::pull({{ .col }}) |>
(\(m) mean(m) * x) ()

}

cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = 2, name = "iris_mean")

same function, read from cache
cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = 2, name = "iris_mean")

remove_currr_cache()

4 cp_map_chr

cp_map_chr Wrapper function of purrr::map. Apply a function to each element
of a vector, but save the intermediate data after a given number of
iterations.

Description

The map functions transform their input by applying a function to each element of a list or atomic
vector and returning an object of the same length as the input. cp_map functions work exactly the
same way, but creates a secret folder in your current working directory and saves the results if they
reach a given checkpoint. This way if you rerun the code, it reads the result from the cache folder
and start to evalutate where you finished.

• cp_map() always returns a list.

• map_lgl(), map_dbl() and map_chr() return an atomic vector of the indicated type (or die
trying). For these functions, .f must return a length-1 vector of the appropriate type.

Usage

cp_map_chr(.x, .f, ..., name = NULL, cp_options = list())

Arguments

.x A list or atomic vector.

.f A function, specified in one of the following ways:

• A named function, e.g. mean.
• An anonymous function, e.g. \(x) x + 1 or function(x) x + 1.
• A formula, e.g. ~ .x + 1. You must use .x to refer to the first argument.

Only recommended if you require backward compatibility with older ver-
sions of R.

... Additional arguments passed on to the mapped function.

name Name for the subfolder in the cache folder. If you do not specify, then cp_map
uses the name of the function combined with the name of x. This is dangerous,
since this generated name can appear multiple times in your code. Also changing
x will result a rerun of the code, however you max want to avoid this. (if a subset
of .x matches with the cached one and the function is the same, then elements
of this subset won’t evaluated, rather read from the cache)

cp_options Options for the evaluation: wait, n_checkpoint, workers, fill.

• wait: An integer to specify that after how many iterations the console
shows the intermediate results (default 1). If its value is between 0 and
1, then it is taken as proportions of iterations to wait (example length of .x
equals 100, then you get back the result after 50 if you set it to 0.5). Set
to Inf to get back the results only after full evaluations. If its value is not
equal to Inf then evaluation is goind in background job.

cp_map_dbl 5

• n_chekpoint: Number of checkpoints, when intermadiate results are saved
(default = 100).

• workers: Number of CPU cores to use (parallel package called in back-
ground). Set to 1 (default) to avoid parallel computing.

• fill() When you get back a not fully evaluated result (default TRUE).
Should the length of the result be the same as .x?

You can set these options also with options(currr.n_checkpoint = 200).
Additional options: currr.unchanged_message (TRUE/FALSE), currr.progress_length

Value

A character vector.

See Also

Other map variants: cp_map(), cp_map_dbl(), cp_map_dfc(), cp_map_dfr(), cp_map_lgl()

Examples

Run them on console!
(functions need writing and reading access to your working directory and they also print)

avg_n <- function(.data, .col, x) {
Sys.sleep(.01)

.data |>
dplyr::pull({{ .col }}) |>
(\(m) mean(m) * x) ()

}

cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

same function, read from cache
cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

remove_currr_cache()

cp_map_dbl Wrapper function of purrr::map. Apply a function to each element
of a vector, but save the intermediate data after a given number of
iterations.

6 cp_map_dbl

Description

The map functions transform their input by applying a function to each element of a list or atomic
vector and returning an object of the same length as the input. cp_map functions work exactly the
same way, but creates a secret folder in your current working directory and saves the results if they
reach a given checkpoint. This way if you rerun the code, it reads the result from the cache folder
and start to evalutate where you finished.

• cp_map() always returns a list.

• map_lgl(), map_dbl() and map_chr() return an atomic vector of the indicated type (or die
trying). For these functions, .f must return a length-1 vector of the appropriate type.

Usage

cp_map_dbl(.x, .f, ..., name = NULL, cp_options = list())

Arguments

.x A list or atomic vector.

.f A function, specified in one of the following ways:

• A named function, e.g. mean.
• An anonymous function, e.g. \(x) x + 1 or function(x) x + 1.
• A formula, e.g. ~ .x + 1. You must use .x to refer to the first argument.

Only recommended if you require backward compatibility with older ver-
sions of R.

... Additional arguments passed on to the mapped function.

name Name for the subfolder in the cache folder. If you do not specify, then cp_map
uses the name of the function combined with the name of x. This is dangerous,
since this generated name can appear multiple times in your code. Also changing
x will result a rerun of the code, however you max want to avoid this. (if a subset
of .x matches with the cached one and the function is the same, then elements
of this subset won’t evaluated, rather read from the cache)

cp_options Options for the evaluation: wait, n_checkpoint, workers, fill.

• wait: An integer to specify that after how many iterations the console
shows the intermediate results (default 1). If its value is between 0 and
1, then it is taken as proportions of iterations to wait (example length of .x
equals 100, then you get back the result after 50 if you set it to 0.5). Set
to Inf to get back the results only after full evaluations. If its value is not
equal to Inf then evaluation is goind in background job.

• n_chekpoint: Number of checkpoints, when intermadiate results are saved
(default = 100).

• workers: Number of CPU cores to use (parallel package called in back-
ground). Set to 1 (default) to avoid parallel computing.

• fill() When you get back a not fully evaluated result (default TRUE).
Should the length of the result be the same as .x?

You can set these options also with options(currr.n_checkpoint = 200).
Additional options: currr.unchanged_message (TRUE/FALSE), currr.progress_length

cp_map_dfc 7

Value

A numeric vector.

See Also

Other map variants: cp_map(), cp_map_chr(), cp_map_dfc(), cp_map_dfr(), cp_map_lgl()

Examples

Run them on console!
(functions need writing and reading access to your working directory and they also print)

avg_n <- function(.data, .col, x) {
Sys.sleep(.01)

.data |>
dplyr::pull({{ .col }}) |>
(\(m) mean(m) * x) ()

}

cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

same function, read from cache
cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

remove_currr_cache()

cp_map_dfc Wrapper function of purrr::map. Apply a function to each element
of a vector, but save the intermediate data after a given number of
iterations.

Description

The map functions transform their input by applying a function to each element of a list or atomic
vector and returning an object of the same length as the input. cp_map functions work exactly the
same way, but creates a secret folder in your current working directory and saves the results if they
reach a given checkpoint. This way if you rerun the code, it reads the result from the cache folder
and start to evalutate where you finished.

• cp_map() always returns a list.

• map_lgl(), map_dbl() and map_chr() return an atomic vector of the indicated type (or die
trying). For these functions, .f must return a length-1 vector of the appropriate type.

Usage

cp_map_dfc(.x, .f, ..., name = NULL, cp_options = list())

8 cp_map_dfc

Arguments

.x A list or atomic vector.

.f A function, specified in one of the following ways:

• A named function, e.g. mean.
• An anonymous function, e.g. \(x) x + 1 or function(x) x + 1.
• A formula, e.g. ~ .x + 1. You must use .x to refer to the first argument.

Only recommended if you require backward compatibility with older ver-
sions of R.

... Additional arguments passed on to the mapped function.

name Name for the subfolder in the cache folder. If you do not specify, then cp_map
uses the name of the function combined with the name of x. This is dangerous,
since this generated name can appear multiple times in your code. Also changing
x will result a rerun of the code, however you max want to avoid this. (if a subset
of .x matches with the cached one and the function is the same, then elements
of this subset won’t evaluated, rather read from the cache)

cp_options Options for the evaluation: wait, n_checkpoint, workers, fill.

• wait: An integer to specify that after how many iterations the console
shows the intermediate results (default 1). If its value is between 0 and
1, then it is taken as proportions of iterations to wait (example length of .x
equals 100, then you get back the result after 50 if you set it to 0.5). Set
to Inf to get back the results only after full evaluations. If its value is not
equal to Inf then evaluation is goind in background job.

• n_chekpoint: Number of checkpoints, when intermadiate results are saved
(default = 100).

• workers: Number of CPU cores to use (parallel package called in back-
ground). Set to 1 (default) to avoid parallel computing.

• fill() When you get back a not fully evaluated result (default TRUE).
Should the length of the result be the same as .x?

You can set these options also with options(currr.n_checkpoint = 200).
Additional options: currr.unchanged_message (TRUE/FALSE), currr.progress_length

Value

A tibble.

See Also

Other map variants: cp_map(), cp_map_chr(), cp_map_dbl(), cp_map_dfr(), cp_map_lgl()

Examples

Run them on console!
(functions need writing and reading access to your working directory and they also print)

avg_n <- function(.data, .col, x) {
Sys.sleep(.01)

cp_map_dfr 9

.data |>
dplyr::pull({{ .col }}) |>
(\(m) mean(m) * x) ()

}

cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

same function, read from cache
cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

remove_currr_cache()

cp_map_dfr Wrapper function of purrr::map. Apply a function to each element
of a vector, but save the intermediate data after a given number of
iterations.

Description

The map functions transform their input by applying a function to each element of a list or atomic
vector and returning an object of the same length as the input. cp_map functions work exactly the
same way, but creates a secret folder in your current working directory and saves the results if they
reach a given checkpoint. This way if you rerun the code, it reads the result from the cache folder
and start to evalutate where you finished.

• cp_map() always returns a list.

• map_lgl(), map_dbl() and map_chr() return an atomic vector of the indicated type (or die
trying). For these functions, .f must return a length-1 vector of the appropriate type.

Usage

cp_map_dfr(.x, .f, ..., name = NULL, cp_options = list())

Arguments

.x A list or atomic vector.

.f A function, specified in one of the following ways:

• A named function, e.g. mean.
• An anonymous function, e.g. \(x) x + 1 or function(x) x + 1.
• A formula, e.g. ~ .x + 1. You must use .x to refer to the first argument.

Only recommended if you require backward compatibility with older ver-
sions of R.

... Additional arguments passed on to the mapped function.

10 cp_map_dfr

name Name for the subfolder in the cache folder. If you do not specify, then cp_map
uses the name of the function combined with the name of x. This is dangerous,
since this generated name can appear multiple times in your code. Also changing
x will result a rerun of the code, however you max want to avoid this. (if a subset
of .x matches with the cached one and the function is the same, then elements
of this subset won’t evaluated, rather read from the cache)

cp_options Options for the evaluation: wait, n_checkpoint, workers, fill.

• wait: An integer to specify that after how many iterations the console
shows the intermediate results (default 1). If its value is between 0 and
1, then it is taken as proportions of iterations to wait (example length of .x
equals 100, then you get back the result after 50 if you set it to 0.5). Set
to Inf to get back the results only after full evaluations. If its value is not
equal to Inf then evaluation is goind in background job.

• n_chekpoint: Number of checkpoints, when intermadiate results are saved
(default = 100).

• workers: Number of CPU cores to use (parallel package called in back-
ground). Set to 1 (default) to avoid parallel computing.

• fill() When you get back a not fully evaluated result (default TRUE).
Should the length of the result be the same as .x?

You can set these options also with options(currr.n_checkpoint = 200).
Additional options: currr.unchanged_message (TRUE/FALSE), currr.progress_length

Value

A tibble.

See Also

Other map variants: cp_map(), cp_map_chr(), cp_map_dbl(), cp_map_dfc(), cp_map_lgl()

Examples

Run them on console!
(functions need writing and reading access to your working directory and they also print)

avg_n <- function(.data, .col, x) {
Sys.sleep(.01)

.data |>
dplyr::pull({{ .col }}) |>
(\(m) mean(m) * x) ()

}

cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

same function, read from cache
cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

cp_map_lgl 11

remove_currr_cache()

cp_map_lgl Wrapper function of purrr::map. Apply a function to each element
of a vector, but save the intermediate data after a given number of
iterations.

Description

The map functions transform their input by applying a function to each element of a list or atomic
vector and returning an object of the same length as the input. cp_map functions work exactly the
same way, but creates a secret folder in your current working directory and saves the results if they
reach a given checkpoint. This way if you rerun the code, it reads the result from the cache folder
and start to evalutate where you finished.

• cp_map() always returns a list.
• map_lgl(), map_dbl() and map_chr() return an atomic vector of the indicated type (or die

trying). For these functions, .f must return a length-1 vector of the appropriate type.

Usage

cp_map_lgl(.x, .f, ..., name = NULL, cp_options = list())

Arguments

.x A list or atomic vector.

.f A function, specified in one of the following ways:
• A named function, e.g. mean.
• An anonymous function, e.g. \(x) x + 1 or function(x) x + 1.
• A formula, e.g. ~ .x + 1. You must use .x to refer to the first argument.

Only recommended if you require backward compatibility with older ver-
sions of R.

... Additional arguments passed on to the mapped function.
name Name for the subfolder in the cache folder. If you do not specify, then cp_map

uses the name of the function combined with the name of x. This is dangerous,
since this generated name can appear multiple times in your code. Also changing
x will result a rerun of the code, however you max want to avoid this. (if a subset
of .x matches with the cached one and the function is the same, then elements
of this subset won’t evaluated, rather read from the cache)

cp_options Options for the evaluation: wait, n_checkpoint, workers, fill.
• wait: An integer to specify that after how many iterations the console

shows the intermediate results (default 1). If its value is between 0 and
1, then it is taken as proportions of iterations to wait (example length of .x
equals 100, then you get back the result after 50 if you set it to 0.5). Set
to Inf to get back the results only after full evaluations. If its value is not
equal to Inf then evaluation is goind in background job.

12 remove_currr_cache

• n_chekpoint: Number of checkpoints, when intermadiate results are saved
(default = 100).

• workers: Number of CPU cores to use (parallel package called in back-
ground). Set to 1 (default) to avoid parallel computing.

• fill() When you get back a not fully evaluated result (default TRUE).
Should the length of the result be the same as .x?

You can set these options also with options(currr.n_checkpoint = 200).
Additional options: currr.unchanged_message (TRUE/FALSE), currr.progress_length

Value

A logical vector.

See Also

Other map variants: cp_map(), cp_map_chr(), cp_map_dbl(), cp_map_dfc(), cp_map_dfr()

Examples

Run them on console!
(functions need writing and reading access to your working directory and they also print)

avg_n <- function(.data, .col, x) {
Sys.sleep(.01)

.data |>
dplyr::pull({{ .col }}) |>
(\(m) mean(m) * x) ()

}

cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

same function, read from cache
cp_map(.x = 1:10, .f = avg_n, .data = iris, .col = Sepal.Length, name = "iris_mean")

remove_currr_cache()

remove_currr_cache Remove currr’s intermediate data from the folder.

Description

Remove currr’s intermediate data from the folder.

Usage

remove_currr_cache(list = NULL)

saving_map 13

Arguments

list A character vector specifying the name of the caches you want to remove (files
in .currr.data folder). If empy (default), all caches will be removed.

Value

No return value, called for side effects

saving_map Run a map with the function, but saves after a given number of ex-
ecution. This is an internal function, you are not supposed to use it
manually, but can call for background job inly if exported.

Description

Run a map with the function, but saves after a given number of execution. This is an internal
function, you are not supposed to use it manually, but can call for background job inly if exported.

Usage

saving_map(.ids, .f, name, n_checkpoint = 100, currr_folder, ...)

Arguments

.ids Placement of .x to work with.

.f Called function.

name Name for saving.

n_checkpoint Number of checkpoints.

currr_folder Folder where cache files are stored.

... Additionals.

Value

No return value, called for side effects

14 saving_map_nodot

saving_map_nodot Run a map with the function, but saves after a given number of ex-
ecution. This is an internal function, you are not supposed to use it
manually, but can call for background job only if exported. This func-
tion differs from saving_map, since it does not have a ... input. This is
neccessary because job::job fails if ... is not provided for the cp_map
call.

Description

Run a map with the function, but saves after a given number of execution. This is an internal
function, you are not supposed to use it manually, but can call for background job only if exported.
This function differs from saving_map, since it does not have a ... input. This is neccessary because
job::job fails if ... is not provided for the cp_map call.

Usage

saving_map_nodot(.ids, .f, name, n_checkpoint = 100, currr_folder)

Arguments

.ids Placement of .x to work with.

.f Called function.

name Name for saving.

n_checkpoint Number of checkpoints.

currr_folder Folder where cache files are stored.

Value

No return value, called for side effects

Index

∗ map variants
cp_map, 2
cp_map_chr, 4
cp_map_dbl, 5
cp_map_dfc, 7
cp_map_dfr, 9
cp_map_lgl, 11

cp_map, 2, 5, 7, 8, 10, 12
cp_map_chr, 3, 4, 7, 8, 10, 12
cp_map_dbl, 3, 5, 5, 8, 10, 12
cp_map_dfc, 3, 5, 7, 7, 10, 12
cp_map_dfr, 3, 5, 7, 8, 9, 12
cp_map_lgl, 3, 5, 7, 8, 10, 11

remove_currr_cache, 12

saving_map, 13
saving_map_nodot, 14

15

	cp_map
	cp_map_chr
	cp_map_dbl
	cp_map_dfc
	cp_map_dfr
	cp_map_lgl
	remove_currr_cache
	saving_map
	saving_map_nodot
	Index

